My research interests are where numerical algorithms enter machine learning models.
I am currently working on probabilistic numerics and the simulation of ordinary and partial differential equations.
Most of the methods I come up with in my papers end up as publically available code.
I am always keen to discuss questions that align with my research interests.
If you would like to chat, please feel invited to get in touch!
Preprints
-
Emilia Magnani, Nicholas Krämer, Runa Eschenhagen, Lorenzo Rosasco, Philipp Hennig.
Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs
arXiv: 2208.01565, 2022 (paper).
-
Jonathan Wenger, Nicholas Krämer, Marvin Pförtner, Jonathan Schmidt, Nathanael Bosch, Nina Effenberger,
Johannes Zenn, Alexandra Gessner, Toni Karvonen, Francois-Xavier Briol, Maren Mahsereci, Philipp Hennig.
ProbNum: Probabilistic numerics in Python
arXiv: 2112.02100, 2021 (paper, code).
-
Nicholas Krämer, Philipp Hennig.
Stable implementation of probabilistic ODE solvers.
arXiv:2012.10106, 2020 (paper, code).
Publications
-
Jonathan Österle, Nicholas Krämer, Philipp Hennig, Philipp Berens.
Probabilistic solvers enable a straight-forward exploration of numerical uncertainty in neuroscience
models.
Journal of Computational Neuroscience, 2022 (paper, code ).
-
Nicholas Krämer, Nathanael Bosch, Jonathan Schmidt, Philipp Hennig.
Probabilistic ODE solutions in millions of dimensions.
ICML, 2022 (paper, code).
-
Nicholas Krämer, Jonathan Schmidt, Philipp Hennig.
Probabilistic numerical method of lines for time-dependent partial differential equations.
AISTATS, 2022 (paper, code).
-
Nicholas Krämer, Philipp Hennig.
Linear-time probabilistic solutions of boundary value problems.
NeurIPS, 2021 (paper, code).
-
Jonathan Schmidt, Nicholas Krämer, Philipp Hennig.
A probabilistic state space model for joint inference from differential equations and data.
NeurIPS, 2021 (paper, code).
-
Hans Kersting, Nicholas Krämer, Martin Schiegg, Christian Daniel, Michael Tiemann, Philipp Hennig.
Differentiable likelihoods for fast inversion of 'likelihood-free' dynamical systems.
ICML, 2020 (paper, code ).
Dissertations
- Krämer, N. (2019).
Gaussian Processes and Uncertainty Quantification. Masterarbeit, Institut für Numerische
Simulation, Universität Bonn. (code).
- Krämer, N. (2016).
Numerisches Lösen von Eigenwertproblemen [Numerical Solution of Eigenvalue Problems].
Bachelorarbeit, Universität Mannheim.
Code
-
tornadox: Probabilistic solvers for high-dimensional ODEs (link).
-
probfindiff: Probabilistic numerical finite differences (link).
-
TUEplots: Matplotlib configurations for scientific papers (link).
-
ProbNum-Evaluation: Evaluate the efficiency of probabilistic numerical algorithms (link).
-
ProbNum: Probabilistic numerics in Python (link).