Taylor-series: Neural ODE problem¶
In [1]:
Copied!
"""Benchmark all Taylor-series estimators on a Neural ODE."""
import jax.numpy as jnp
import matplotlib.pyplot as plt
import jax
from probdiffeq.util.doc_util import notebook
jax.config.update("jax_platform_name", "cpu")
"""Benchmark all Taylor-series estimators on a Neural ODE."""
import jax.numpy as jnp
import matplotlib.pyplot as plt
import jax
from probdiffeq.util.doc_util import notebook
jax.config.update("jax_platform_name", "cpu")
In [2]:
Copied!
def load_results():
"""Load the results from a file."""
return jnp.load("./results.npy", allow_pickle=True)[()]
def choose_style(label):
"""Choose a plotting style for a given algorithm."""
if "doubling" in label.lower():
return {"color": "C3", "linestyle": "dotted", "label": label}
if "unroll" in label.lower():
return {"color": "C2", "linestyle": "dashdot", "label": label}
if "taylor" in label.lower():
return {"color": "C0", "linestyle": "solid"}
if "forward" in label.lower():
return {"color": "C1", "linestyle": "dashed", "label": label}
msg = f"Label {label} unknown."
raise ValueError(msg)
def plot_results(axis_compile, axis_perform, results):
"""Plot the results."""
style_curve = {"alpha": 0.85}
style_area = {"alpha": 0.15}
for label, wp in results.items():
style = choose_style(label)
inputs = wp["arguments"]
work_compile = wp["work_compile"]
work_mean, work_std = wp["work_mean"], wp["work_std"]
if "doubling" in label:
num_repeats = jnp.diff(jnp.concatenate((jnp.ones((1,)), inputs)))
inputs = jnp.arange(1, jnp.amax(inputs) * 1)
work_compile = _adaptive_repeat(work_compile, num_repeats)
work_mean = _adaptive_repeat(work_mean, num_repeats)
work_std = _adaptive_repeat(work_std, num_repeats)
# axis_perform.set_xticks(inputs[::2])
axis_compile.semilogy(inputs, work_compile, **style, **style_curve)
range_lower, range_upper = work_mean - work_std, work_mean + work_std
axis_perform.semilogy(inputs, work_mean, **style, **style_curve)
axis_perform.fill_between(
inputs, range_lower, range_upper, **style, **style_area
)
axis_compile.set_xticks(range(1, 15))
axis_compile.set_ylim((1e-3, 1e2))
return axis_compile, axis_perform
def _adaptive_repeat(xs, ys):
"""Repeat the doubling values correctly to create a comprehensible plot."""
zs = []
for x, y in zip(xs, ys):
zs.extend([x] * int(y))
return jnp.asarray(zs)
def load_results():
"""Load the results from a file."""
return jnp.load("./results.npy", allow_pickle=True)[()]
def choose_style(label):
"""Choose a plotting style for a given algorithm."""
if "doubling" in label.lower():
return {"color": "C3", "linestyle": "dotted", "label": label}
if "unroll" in label.lower():
return {"color": "C2", "linestyle": "dashdot", "label": label}
if "taylor" in label.lower():
return {"color": "C0", "linestyle": "solid"}
if "forward" in label.lower():
return {"color": "C1", "linestyle": "dashed", "label": label}
msg = f"Label {label} unknown."
raise ValueError(msg)
def plot_results(axis_compile, axis_perform, results):
"""Plot the results."""
style_curve = {"alpha": 0.85}
style_area = {"alpha": 0.15}
for label, wp in results.items():
style = choose_style(label)
inputs = wp["arguments"]
work_compile = wp["work_compile"]
work_mean, work_std = wp["work_mean"], wp["work_std"]
if "doubling" in label:
num_repeats = jnp.diff(jnp.concatenate((jnp.ones((1,)), inputs)))
inputs = jnp.arange(1, jnp.amax(inputs) * 1)
work_compile = _adaptive_repeat(work_compile, num_repeats)
work_mean = _adaptive_repeat(work_mean, num_repeats)
work_std = _adaptive_repeat(work_std, num_repeats)
# axis_perform.set_xticks(inputs[::2])
axis_compile.semilogy(inputs, work_compile, **style, **style_curve)
range_lower, range_upper = work_mean - work_std, work_mean + work_std
axis_perform.semilogy(inputs, work_mean, **style, **style_curve)
axis_perform.fill_between(
inputs, range_lower, range_upper, **style, **style_area
)
axis_compile.set_xticks(range(1, 15))
axis_compile.set_ylim((1e-3, 1e2))
return axis_compile, axis_perform
def _adaptive_repeat(xs, ys):
"""Repeat the doubling values correctly to create a comprehensible plot."""
zs = []
for x, y in zip(xs, ys):
zs.extend([x] * int(y))
return jnp.asarray(zs)
In [3]:
Copied!
plt.rcParams.update(notebook.plot_style())
plt.rcParams.update(notebook.plot_sizes())
plt.rcParams.update(notebook.plot_style())
plt.rcParams.update(notebook.plot_sizes())
In [4]:
Copied!
fig, (axis_perform, axis_compile) = plt.subplots(
ncols=2, figsize=(8, 3), dpi=150, sharex=True
)
results = load_results()
axis_compile, axis_perform = plot_results(axis_compile, axis_perform, results)
axis_compile.set_title("Compilation time")
axis_perform.set_title("Evaluation time")
axis_compile.legend(loc="lower right")
axis_compile.set_xlabel("Number of Derivatives")
axis_perform.set_xlabel("Number of Derivatives")
axis_perform.set_ylabel("Wall time (sec)")
axis_perform.grid()
axis_compile.grid()
plt.show()
fig, (axis_perform, axis_compile) = plt.subplots(
ncols=2, figsize=(8, 3), dpi=150, sharex=True
)
results = load_results()
axis_compile, axis_perform = plot_results(axis_compile, axis_perform, results)
axis_compile.set_title("Compilation time")
axis_perform.set_title("Evaluation time")
axis_compile.legend(loc="lower right")
axis_compile.set_xlabel("Number of Derivatives")
axis_perform.set_xlabel("Number of Derivatives")
axis_perform.set_ylabel("Wall time (sec)")
axis_perform.grid()
axis_compile.grid()
plt.show()
In [ ]:
Copied!