taylor
Taylor-expand the solution of an initial value problem (IVP).
odejet_affine(vf: Callable, initial_values: Sequence[Array], /, num: int)
¤
Evaluate the Taylor series of an affine differential equation.
Compilation time
JIT-compiling this function unrolls a loop of length num
.
Source code in probdiffeq/taylor.py
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
odejet_doubling_unroll(vf: Callable, inits: Sequence[Array], /, num_doublings: int)
¤
Combine Taylor-mode differentiation and Newton's doubling.
Warning: highly EXPERIMENTAL feature!
Support for Newton's doubling is highly experimental. There is no guarantee that it works correctly. It might be deleted tomorrow and without any deprecation policy.
Compilation time
JIT-compiling this function unrolls a loop.
Source code in probdiffeq/taylor.py
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
|
odejet_padded_scan(vf: Callable, inits: Sequence[Array], /, num: int)
¤
Taylor-expand the solution of an IVP with Taylor-mode differentiation.
Other than odejet_unroll()
, this function implements the loop via a scan,
which comes at the price of padding the loop variable with zeros as appropriate.
It is expected to compile more quickly than odejet_unroll()
, but may
execute more slowly.
The differences should be small. Consult the benchmarks if performance is critical.
Source code in probdiffeq/taylor.py
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
|
odejet_unroll(vf: Callable, inits: Sequence[Array], /, num: int)
¤
Taylor-expand the solution of an IVP with Taylor-mode differentiation.
Other than odejet_padded_scan()
, this function does not depend on zero-padding
the coefficients at the price of unrolling a loop of length num-1
.
It is expected to compile more slowly than odejet_padded_scan()
,
but execute more quickly.
The differences should be small. Consult the benchmarks if performance is critical.
Compilation time
JIT-compiling this function unrolls a loop.
Source code in probdiffeq/taylor.py
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
|
odejet_via_jvp(vf: Callable, inits: Sequence[Array], /, num: int)
¤
Taylor-expand the solution of an IVP with recursive forward-mode differentiation.
Compilation time
JIT-compiling this function unrolls a loop.
Source code in probdiffeq/taylor.py
171 172 173 174 175 176 177 178 179 180 181 182 183 |
|
runge_kutta_starter(dt, *, ssm, atol=1e-12, rtol=1e-10)
¤
Create an estimator that uses a Runge-Kutta starter.
Source code in probdiffeq/taylor.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
|