ivpsolvers
Probabilistic IVP solvers.
adaptive(slvr, /, *, ssm, atol=0.0001, rtol=0.01, control=None, norm_ord=None)
¤
Make an IVP solver adaptive.
Source code in probdiffeq/ivpsolvers.py
930 931 932 933 934 935 936 937 |
|
control_integral(*, clip=False, safety=0.95, factor_min=0.2, factor_max=10.0) -> _Controller
¤
Construct an integral-controller.
Source code in probdiffeq/ivpsolvers.py
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 |
|
control_proportional_integral(*, clip: bool = False, safety=0.95, factor_min=0.2, factor_max=10.0, power_integral_unscaled=0.3, power_proportional_unscaled=0.4) -> _Controller
¤
Construct a proportional-integral-controller with time-clipping.
Source code in probdiffeq/ivpsolvers.py
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 |
|
correction_slr0(*, ssm, cubature_fun=cubature_third_order_spherical) -> _Correction
¤
Zeroth-order statistical linear regression.
Source code in probdiffeq/ivpsolvers.py
563 564 565 566 |
|
correction_slr1(*, ssm, cubature_fun=cubature_third_order_spherical) -> _Correction
¤
First-order statistical linear regression.
Source code in probdiffeq/ivpsolvers.py
569 570 571 572 |
|
correction_ts0(*, ssm, ode_order=1) -> _Correction
¤
Zeroth-order Taylor linearisation.
Source code in probdiffeq/ivpsolvers.py
551 552 553 554 |
|
correction_ts1(*, ssm, ode_order=1) -> _Correction
¤
First-order Taylor linearisation.
Source code in probdiffeq/ivpsolvers.py
557 558 559 560 |
|
cubature_gauss_hermite(input_shape, degree=5) -> _PositiveCubatureRule
¤
(Statistician's) Gauss-Hermite cubature.
The number of cubature points is prod(input_shape)**degree
.
Source code in probdiffeq/ivpsolvers.py
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
|
cubature_third_order_spherical(input_shape) -> _PositiveCubatureRule
¤
Third-order spherical cubature integration.
Source code in probdiffeq/ivpsolvers.py
91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
|
cubature_unscented_transform(input_shape, r=1.0) -> _PositiveCubatureRule
¤
Unscented transform.
Source code in probdiffeq/ivpsolvers.py
114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|
prior_ibm(tcoeffs, *, ssm_fact: str, output_scale=None)
¤
Construct an adaptive(/continuous-time), multiply-integrated Wiener process.
Source code in probdiffeq/ivpsolvers.py
29 30 31 32 33 34 35 36 37 38 |
|
prior_ibm_discrete(ts, *, tcoeffs_like, ssm_fact: str, output_scale=None)
¤
Compute a time-discretized, multiply-integrated Wiener process.
Source code in probdiffeq/ivpsolvers.py
41 42 43 44 45 46 47 48 49 50 51 |
|
solver(extrapolation, /, *, correction, prior, ssm)
¤
Create a solver that does not calibrate the output scale automatically.
Source code in probdiffeq/ivpsolvers.py
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 |
|
solver_dynamic(extrapolation, *, correction, prior, ssm)
¤
Create a solver that calibrates the output scale dynamically.
Source code in probdiffeq/ivpsolvers.py
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 |
|
solver_mle(extrapolation, /, *, correction, prior, ssm)
¤
Create a solver that calibrates the output scale via maximum-likelihood.
Warning: needs to be combined with a call to stats.calibrate() after solving if the MLE-calibration shall be used.
Source code in probdiffeq/ivpsolvers.py
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 |
|
strategy_filter(*, ssm)
¤
Construct a filter.
Source code in probdiffeq/ivpsolvers.py
607 608 609 610 611 612 613 614 615 |
|
strategy_fixedpoint(*, ssm)
¤
Construct a fixedpoint-smoother.
Source code in probdiffeq/ivpsolvers.py
596 597 598 599 600 601 602 603 604 |
|
strategy_smoother(*, ssm)
¤
Construct a smoother.
Source code in probdiffeq/ivpsolvers.py
585 586 587 588 589 590 591 592 593 |
|