ivpsolvers
Probabilistic IVP solvers.
correction_slr0(cubature_fun=cubature_third_order_spherical) -> _Correction
¤
Zeroth-order statistical linear regression.
Source code in probdiffeq/ivpsolvers.py
508 509 510 511 512 513 514 515 |
|
correction_slr1(cubature_fun=cubature_third_order_spherical) -> _Correction
¤
First-order statistical linear regression.
Source code in probdiffeq/ivpsolvers.py
518 519 520 521 522 523 524 525 |
|
correction_ts0(*, ode_order=1) -> _Correction
¤
Zeroth-order Taylor linearisation.
Source code in probdiffeq/ivpsolvers.py
455 456 457 458 459 460 461 |
|
correction_ts1(*, ode_order=1) -> _Correction
¤
First-order Taylor linearisation.
Source code in probdiffeq/ivpsolvers.py
464 465 466 467 468 469 470 |
|
cubature_gauss_hermite(input_shape, degree=5) -> _PositiveCubatureRule
¤
(Statistician's) Gauss-Hermite cubature.
The number of cubature points is prod(input_shape)**degree
.
Source code in probdiffeq/ivpsolvers.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
cubature_third_order_spherical(input_shape) -> _PositiveCubatureRule
¤
Third-order spherical cubature integration.
Source code in probdiffeq/ivpsolvers.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
|
cubature_unscented_transform(input_shape, r=1.0) -> _PositiveCubatureRule
¤
Unscented transform.
Source code in probdiffeq/ivpsolvers.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
|
prior_ibm(num_derivatives, output_scale=None)
¤
Construct an adaptive(/continuous-time), multiply-integrated Wiener process.
Source code in probdiffeq/ivpsolvers.py
773 774 775 776 777 |
|
prior_ibm_discrete(ts, *, num_derivatives, output_scale=None)
¤
Compute a time-discretised, multiply-integrated Wiener process.
Source code in probdiffeq/ivpsolvers.py
780 781 782 783 784 785 786 787 788 789 790 |
|
solver(strategy)
¤
Create a solver that does not calibrate the output scale automatically.
Source code in probdiffeq/ivpsolvers.py
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 |
|
solver_dynamic(strategy)
¤
Create a solver that calibrates the output scale dynamically.
Source code in probdiffeq/ivpsolvers.py
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 |
|
solver_mle(strategy)
¤
Create a solver that calibrates the output scale via maximum-likelihood.
Warning: needs to be combined with a call to stats.calibrate() after solving if the MLE-calibration shall be used.
Source code in probdiffeq/ivpsolvers.py
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 |
|
strategy_filter(prior, correction: _Correction) -> _Strategy
¤
Construct a filter.
Source code in probdiffeq/ivpsolvers.py
642 643 644 645 646 647 648 649 650 651 652 |
|
strategy_fixedpoint(prior, correction: _Correction) -> _Strategy
¤
Construct a fixedpoint-smoother.
Source code in probdiffeq/ivpsolvers.py
629 630 631 632 633 634 635 636 637 638 639 |
|
strategy_smoother(prior, correction: _Correction) -> _Strategy
¤
Construct a smoother.
Source code in probdiffeq/ivpsolvers.py
616 617 618 619 620 621 622 623 624 625 626 |
|