ivpsolvers
Probabilistic IVP solvers.
adaptive(slvr, /, *, ssm, atol=0.0001, rtol=0.01, control=None, norm_ord=None, clip_dt: bool = False, eps: float | None = None)
¤
Make an IVP solver adaptive.
Source code in probdiffeq/ivpsolvers.py
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 |
|
control_integral(*, safety=0.95, factor_min=0.2, factor_max=10.0) -> _Controller[None]
¤
Construct an integral-controller.
Source code in probdiffeq/ivpsolvers.py
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 |
|
control_proportional_integral(*, safety=0.95, factor_min=0.2, factor_max=10.0, power_integral_unscaled=0.3, power_proportional_unscaled=0.4) -> _Controller[float]
¤
Construct a proportional-integral-controller with time-clipping.
Source code in probdiffeq/ivpsolvers.py
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 |
|
correction_slr0(vector_field, *, ssm, cubature_fun=cubature_third_order_spherical, damp: float = 0.0) -> _Correction
¤
Zeroth-order statistical linear regression.
Source code in probdiffeq/ivpsolvers.py
527 528 529 530 531 532 533 534 535 536 537 538 539 |
|
correction_slr1(vector_field, *, ssm, cubature_fun=cubature_third_order_spherical, damp: float = 0.0) -> _Correction
¤
First-order statistical linear regression.
Source code in probdiffeq/ivpsolvers.py
542 543 544 545 546 547 548 549 550 551 552 553 554 |
|
correction_ts0(vector_field, *, ssm, ode_order=1, damp: float = 0.0) -> _Correction
¤
Zeroth-order Taylor linearisation.
Source code in probdiffeq/ivpsolvers.py
487 488 489 490 491 492 493 494 495 496 497 |
|
correction_ts1(vector_field, *, ssm, ode_order=1, damp: float = 0.0, jvp_probes=10, jvp_probes_seed=1) -> _Correction
¤
First-order Taylor linearisation.
Source code in probdiffeq/ivpsolvers.py
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
|
cubature_gauss_hermite(input_shape, degree=5) -> _PositiveCubatureRule
¤
(Statistician's) Gauss-Hermite cubature.
The number of cubature points is prod(input_shape)**degree
.
Source code in probdiffeq/ivpsolvers.py
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
|
cubature_third_order_spherical(input_shape) -> _PositiveCubatureRule
¤
Third-order spherical cubature integration.
Source code in probdiffeq/ivpsolvers.py
94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
|
cubature_unscented_transform(input_shape, r=1.0) -> _PositiveCubatureRule
¤
Unscented transform.
Source code in probdiffeq/ivpsolvers.py
117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
|
prior_wiener_integrated(tcoeffs, *, ssm_fact: str, output_scale: ArrayLike | None = None, damp: float = 0.0)
¤
Construct an adaptive(/continuous-time), multiply-integrated Wiener process.
Source code in probdiffeq/ivpsolvers.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
|
prior_wiener_integrated_discrete(ts, *args, **kwargs)
¤
Compute a time-discretized, multiply-integrated Wiener process.
Source code in probdiffeq/ivpsolvers.py
45 46 47 48 49 50 51 |
|
solver(strategy, *, correction, prior, ssm)
¤
Create a solver that does not calibrate the output scale automatically.
Source code in probdiffeq/ivpsolvers.py
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 |
|
solver_dynamic(strategy, *, correction, prior, ssm)
¤
Create a solver that calibrates the output scale dynamically.
Source code in probdiffeq/ivpsolvers.py
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 |
|
solver_mle(strategy, *, correction, prior, ssm)
¤
Create a solver that calibrates the output scale via maximum-likelihood.
Warning: needs to be combined with a call to stats.calibrate() after solving if the MLE-calibration shall be used.
Source code in probdiffeq/ivpsolvers.py
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 |
|
strategy_filter(*, ssm) -> _Strategy
¤
Construct a filter.
Source code in probdiffeq/ivpsolvers.py
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
|
strategy_fixedpoint(*, ssm) -> _Strategy
¤
Construct a fixedpoint-smoother.
Source code in probdiffeq/ivpsolvers.py
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
|
strategy_smoother(*, ssm) -> _Strategy
¤
Construct a smoother.
Source code in probdiffeq/ivpsolvers.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
|