ivpsolve
Routines for estimating solutions of initial value problems.
IVPSolution
¤
The probabilistic numerical solution of an initial value problem (IVP).
This class stores the computed solution, its uncertainty estimates, and details of the probabilistic model used in probabilistic numerical integration.
Source code in probdiffeq/ivpsolve.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
|
marginals: Any
instance-attribute
¤
Marginal distributions for each time point in the posterior distribution.
num_steps: Array
instance-attribute
¤
The number of solver steps taken at each time point.
output_scale: Array
instance-attribute
¤
The calibrated output scale of the probabilistic model.
posterior: Any
instance-attribute
¤
A the full posterior distribution of the probabilistic numerical solution.
Typically, a backward factorisation of the posterior.
ssm: Any
instance-attribute
¤
State-space model implementation used by the solver.
t: Array
instance-attribute
¤
Time points at which the IVP solution has been computed.
u: Array
instance-attribute
¤
The mean of the IVP solution at each computed time point.
u_std: Array
instance-attribute
¤
The standard deviation of the IVP solution, indicating uncertainty.
dt0(vf_autonomous, initial_values, /, scale=0.01, nugget=1e-05)
¤
Propose an initial time-step.
Source code in probdiffeq/ivpsolve.py
362 363 364 365 366 367 368 369 370 |
|
dt0_adaptive(vf, initial_values, /, t0, *, error_contraction_rate, rtol, atol)
¤
Propose an initial time-step as a function of the tolerances.
Source code in probdiffeq/ivpsolve.py
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
|
solve_adaptive_save_at(vector_field, initial_condition, save_at, adaptive_solver, dt0, *, ssm) -> IVPSolution
¤
Solve an initial value problem and return the solution at a pre-determined grid.
This algorithm implements the method by Krämer (2024). Please consider citing it if you use it for your research. A PDF is available here and Krämer's (2024) experiments are here.
BibTex for Krämer (2024)
@article{krämer2024adaptive,
title={Adaptive Probabilistic {ODE} Solvers Without
Adaptive Memory Requirements},
author={Kr{\"a}mer, Nicholas},
year={2024},
eprint={2410.10530},
archivePrefix={arXiv},
url={https://arxiv.org/abs/2410.10530},
}
Source code in probdiffeq/ivpsolve.py
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
solve_adaptive_save_every_step(vector_field, initial_condition, t0, t1, adaptive_solver, dt0, *, ssm) -> IVPSolution
¤
Solve an initial value problem and save every step.
This function uses a native-Python while loop.
Warning
Not JITable, not reverse-mode-differentiable.
Source code in probdiffeq/ivpsolve.py
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
|
solve_adaptive_terminal_values(vector_field, initial_condition, t0, t1, adaptive_solver, dt0, *, ssm) -> IVPSolution
¤
Simulate the terminal values of an initial value problem.
Source code in probdiffeq/ivpsolve.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
|
solve_fixed_grid(vector_field, initial_condition, grid, solver, *, ssm) -> IVPSolution
¤
Solve an initial value problem on a fixed, pre-determined grid.
Source code in probdiffeq/ivpsolve.py
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
|