ivpsolve
Routines for estimating solutions of initial value problems.
adaptive(solver, atol=0.0001, rtol=0.01, control=None, norm_ord=None)
¤
Make an IVP solver adaptive.
Source code in probdiffeq/ivpsolve.py
115 116 117 118 119 120 |
|
control_integral(*, clip=False, safety=0.95, factor_min=0.2, factor_max=10.0) -> _Controller
¤
Construct an integral-controller.
Source code in probdiffeq/ivpsolve.py
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
|
control_proportional_integral(*, clip: bool = False, safety=0.95, factor_min=0.2, factor_max=10.0, power_integral_unscaled=0.3, power_proportional_unscaled=0.4) -> _Controller
¤
Construct a proportional-integral-controller with time-clipping.
Source code in probdiffeq/ivpsolve.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
|
dt0(vf_autonomous, initial_values, /, scale=0.01, nugget=1e-05)
¤
Propose an initial time-step.
Source code in probdiffeq/ivpsolve.py
625 626 627 628 629 630 631 632 633 |
|
dt0_adaptive(vf, initial_values, /, t0, *, error_contraction_rate, rtol, atol)
¤
Propose an initial time-step as a function of the tolerances.
Source code in probdiffeq/ivpsolve.py
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
|
solve_adaptive_save_at(vector_field, initial_condition, save_at, adaptive_solver, dt0) -> _Solution
¤
Solve an initial value problem and return the solution at a pre-determined grid.
This algorithm implements the method by Krämer (2024). Please consider citing it if you use it for your research. A PDF is available here and Krämer's (2024) experiments are here.
BibTex for Krämer (2024)
@article{krämer2024adaptive,
title={Adaptive Probabilistic {ODE} Solvers Without
Adaptive Memory Requirements},
author={Kr{\"a}mer, Nicholas},
year={2024},
eprint={2410.10530},
archivePrefix={arXiv},
url={https://arxiv.org/abs/2410.10530},
}
Source code in probdiffeq/ivpsolve.py
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
|
solve_adaptive_save_every_step(vector_field, initial_condition, t0, t1, adaptive_solver, dt0) -> _Solution
¤
Solve an initial value problem and save every step.
This function uses a native-Python while loop.
Warning
Not JITable, not reverse-mode-differentiable.
Source code in probdiffeq/ivpsolve.py
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
|
solve_adaptive_terminal_values(vector_field, initial_condition, t0, t1, adaptive_solver, dt0) -> _Solution
¤
Simulate the terminal values of an initial value problem.
Source code in probdiffeq/ivpsolve.py
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
|
solve_fixed_grid(vector_field, initial_condition, grid, solver) -> _Solution
¤
Solve an initial value problem on a fixed, pre-determined grid.
Source code in probdiffeq/ivpsolve.py
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
|