Skip to content

ivpsolve

Routines for estimating solutions of initial value problems.

IVPSolution ¤

The probabilistic numerical solution of an initial value problem (IVP).

This class stores the computed solution, its uncertainty estimates, and details of the probabilistic model used in probabilistic numerical integration.

Source code in probdiffeq/ivpsolve.py
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
@containers.dataclass
class IVPSolution:
    """The probabilistic numerical solution of an initial value problem (IVP).

    This class stores the computed solution,
    its uncertainty estimates, and details of the probabilistic model
    used in probabilistic numerical integration.
    """

    t: Array
    """Time points at which the IVP solution has been computed."""

    u: Array
    """The mean of the IVP solution at each computed time point."""

    u_std: Array
    """The standard deviation of the IVP solution, indicating uncertainty."""

    output_scale: Array
    """The calibrated output scale of the probabilistic model."""

    marginals: Any
    """Marginal distributions for each time point in the posterior distribution."""

    posterior: Any
    """A the full posterior distribution of the probabilistic numerical solution.

    Typically, a backward factorisation of the posterior.
    """

    num_steps: Array
    """The number of solver steps taken at each time point."""

    ssm: Any
    """State-space model implementation used by the solver."""

    @staticmethod
    def _register_pytree_node():
        def _sol_flatten(sol):
            children = (
                sol.t,
                sol.u,
                sol.u_std,
                sol.marginals,
                sol.posterior,
                sol.output_scale,
                sol.num_steps,
            )
            aux = (sol.ssm,)
            return children, aux

        def _sol_unflatten(aux, children):
            (ssm,) = aux
            t, u, u_std, marginals, posterior, output_scale, n = children
            return IVPSolution(
                t=t,
                u=u,
                u_std=u_std,
                marginals=marginals,
                posterior=posterior,
                output_scale=output_scale,
                num_steps=n,
                ssm=ssm,
            )

        tree_util.register_pytree_node(IVPSolution, _sol_flatten, _sol_unflatten)

marginals: Any instance-attribute ¤

Marginal distributions for each time point in the posterior distribution.

num_steps: Array instance-attribute ¤

The number of solver steps taken at each time point.

output_scale: Array instance-attribute ¤

The calibrated output scale of the probabilistic model.

posterior: Any instance-attribute ¤

A the full posterior distribution of the probabilistic numerical solution.

Typically, a backward factorisation of the posterior.

ssm: Any instance-attribute ¤

State-space model implementation used by the solver.

t: Array instance-attribute ¤

Time points at which the IVP solution has been computed.

u: Array instance-attribute ¤

The mean of the IVP solution at each computed time point.

u_std: Array instance-attribute ¤

The standard deviation of the IVP solution, indicating uncertainty.

dt0(vf_autonomous, initial_values, /, scale=0.01, nugget=1e-05) ¤

Propose an initial time-step.

Source code in probdiffeq/ivpsolve.py
362
363
364
365
366
367
368
369
370
def dt0(vf_autonomous, initial_values, /, scale=0.01, nugget=1e-5):
    """Propose an initial time-step."""
    u0, *_ = initial_values
    f0 = vf_autonomous(*initial_values)

    norm_y0 = linalg.vector_norm(u0)
    norm_dy0 = linalg.vector_norm(f0) + nugget

    return scale * norm_y0 / norm_dy0

dt0_adaptive(vf, initial_values, /, t0, *, error_contraction_rate, rtol, atol) ¤

Propose an initial time-step as a function of the tolerances.

Source code in probdiffeq/ivpsolve.py
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
def dt0_adaptive(vf, initial_values, /, t0, *, error_contraction_rate, rtol, atol):
    """Propose an initial time-step as a function of the tolerances."""
    # Algorithm from:
    # E. Hairer, S. P. Norsett G. Wanner,
    # Solving Ordinary Differential Equations I: Nonstiff Problems, Sec. II.4.
    # Implementation mostly copied from
    #
    # https://github.com/google/jax/blob/main/jax/experimental/ode.py
    #

    if len(initial_values) > 1:
        raise ValueError
    y0 = initial_values[0]

    f0 = vf(y0, t=t0)
    scale = atol + np.abs(y0) * rtol
    d0, d1 = linalg.vector_norm(y0), linalg.vector_norm(f0)

    dt0 = np.where((d0 < 1e-5) | (d1 < 1e-5), 1e-6, 0.01 * d0 / d1)

    y1 = y0 + dt0 * f0
    f1 = vf(y1, t=t0 + dt0)
    d2 = linalg.vector_norm((f1 - f0) / scale) / dt0

    dt1 = np.where(
        (d1 <= 1e-15) & (d2 <= 1e-15),
        np.maximum(1e-6, dt0 * 1e-3),
        (0.01 / np.maximum(d1, d2)) ** (1.0 / (error_contraction_rate + 1.0)),
    )
    return np.minimum(100.0 * dt0, dt1)

solve_adaptive_save_at(vector_field, initial_condition, save_at, adaptive_solver, dt0, *, ssm) -> IVPSolution ¤

Solve an initial value problem and return the solution at a pre-determined grid.

This algorithm implements the method by Krämer (2024). Please consider citing it if you use it for your research. A PDF is available here and Krämer's (2024) experiments are here.

BibTex for Krämer (2024)
@article{krämer2024adaptive,
    title={Adaptive Probabilistic {ODE} Solvers Without
    Adaptive Memory Requirements},
    author={Kr{\"a}mer, Nicholas},
    year={2024},
    eprint={2410.10530},
    archivePrefix={arXiv},
    url={https://arxiv.org/abs/2410.10530},
}
Source code in probdiffeq/ivpsolve.py
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
def solve_adaptive_save_at(
    vector_field, initial_condition, save_at, adaptive_solver, dt0, *, ssm
) -> IVPSolution:
    r"""Solve an initial value problem and return the solution at a pre-determined grid.

    This algorithm implements the method by Krämer (2024).
    Please consider citing it if you use it for your research.
    A PDF is available [here](https://arxiv.org/abs/2410.10530)
    and Krämer's (2024) experiments are
    [here](https://github.com/pnkraemer/code-adaptive-prob-ode-solvers).


    ??? note "BibTex for Krämer (2024)"
        ```bibtex
        @article{krämer2024adaptive,
            title={Adaptive Probabilistic {ODE} Solvers Without
            Adaptive Memory Requirements},
            author={Kr{\"a}mer, Nicholas},
            year={2024},
            eprint={2410.10530},
            archivePrefix={arXiv},
            url={https://arxiv.org/abs/2410.10530},
        }
        ```

    """
    if not adaptive_solver.solver.is_suitable_for_save_at:
        msg = (
            f"Strategy {adaptive_solver.solver} should not "
            f"be used in solve_adaptive_save_at. "
        )
        warnings.warn(msg, stacklevel=1)

    (_t, solution_save_at), _, num_steps = _solve_adaptive_save_at(
        tree_util.Partial(vector_field),
        save_at[0],
        initial_condition,
        save_at=save_at[1:],
        adaptive_solver=adaptive_solver,
        dt0=dt0,
    )

    # I think the user expects the initial condition to be part of the state
    # (as well as marginals), so we compute those things here
    posterior_t0, *_ = initial_condition
    posterior_save_at, output_scale = solution_save_at
    _tmp = _userfriendly_output(
        posterior=posterior_save_at, posterior_t0=posterior_t0, ssm=ssm
    )
    marginals, posterior = _tmp
    u = ssm.stats.qoi_from_sample(marginals.mean)
    std = ssm.stats.standard_deviation(marginals)
    u_std = ssm.stats.qoi_from_sample(std)
    return IVPSolution(
        t=save_at,
        u=u,
        u_std=u_std,
        marginals=marginals,
        posterior=posterior,
        output_scale=output_scale,
        num_steps=num_steps,
        ssm=ssm,
    )

solve_adaptive_save_every_step(vector_field, initial_condition, t0, t1, adaptive_solver, dt0, *, ssm) -> IVPSolution ¤

Solve an initial value problem and save every step.

This function uses a native-Python while loop.

Warning

Not JITable, not reverse-mode-differentiable.

Source code in probdiffeq/ivpsolve.py
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
def solve_adaptive_save_every_step(
    vector_field, initial_condition, t0, t1, adaptive_solver, dt0, *, ssm
) -> IVPSolution:
    """Solve an initial value problem and save every step.

    This function uses a native-Python while loop.

    !!! warning
        Not JITable, not reverse-mode-differentiable.
    """
    if not adaptive_solver.solver.is_suitable_for_save_every_step:
        msg = (
            f"Strategy {adaptive_solver.solver} should not "
            f"be used in solve_adaptive_save_every_step."
        )
        warnings.warn(msg, stacklevel=1)

    generator = _solution_generator(
        tree_util.Partial(vector_field),
        t0,
        initial_condition,
        t1=t1,
        adaptive_solver=adaptive_solver,
        dt0=dt0,
    )
    tmp = tree_array_util.tree_stack(list(generator))
    (t, solution_every_step), _dt, num_steps = tmp

    # I think the user expects the initial time-point to be part of the grid
    # (Even though t0 is not computed by this function)
    t = np.concatenate((np.atleast_1d(t0), t))

    # I think the user expects marginals, so we compute them here
    posterior_t0, *_ = initial_condition
    posterior, output_scale = solution_every_step
    _tmp = _userfriendly_output(posterior=posterior, posterior_t0=posterior_t0, ssm=ssm)
    marginals, posterior = _tmp

    u = ssm.stats.qoi_from_sample(marginals.mean)
    std = ssm.stats.standard_deviation(marginals)
    u_std = ssm.stats.qoi_from_sample(std)
    return IVPSolution(
        t=t,
        u=u,
        u_std=u_std,
        ssm=ssm,
        marginals=marginals,
        posterior=posterior,
        output_scale=output_scale,
        num_steps=num_steps,
    )

solve_adaptive_terminal_values(vector_field, initial_condition, t0, t1, adaptive_solver, dt0, *, ssm) -> IVPSolution ¤

Simulate the terminal values of an initial value problem.

Source code in probdiffeq/ivpsolve.py
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
def solve_adaptive_terminal_values(
    vector_field, initial_condition, t0, t1, adaptive_solver, dt0, *, ssm
) -> IVPSolution:
    """Simulate the terminal values of an initial value problem."""
    save_at = np.asarray([t1])
    (_t, solution_save_at), _, num_steps = _solve_adaptive_save_at(
        tree_util.Partial(vector_field),
        t0,
        initial_condition,
        save_at=save_at,
        adaptive_solver=adaptive_solver,
        dt0=dt0,
    )
    # "squeeze"-type functionality (there is only a single state!)
    squeeze_fun = functools.partial(np.squeeze_along_axis, axis=0)
    solution_save_at = tree_util.tree_map(squeeze_fun, solution_save_at)
    num_steps = tree_util.tree_map(squeeze_fun, num_steps)

    # I think the user expects marginals, so we compute them here
    # todo: do this in IVPSolution.* methods?
    posterior, output_scale = solution_save_at
    marginals = posterior.init if isinstance(posterior, stats.MarkovSeq) else posterior

    u = ssm.stats.qoi_from_sample(marginals.mean)
    std = ssm.stats.standard_deviation(marginals)
    u_std = ssm.stats.qoi_from_sample(std)
    return IVPSolution(
        t=t1,
        u=u,
        u_std=u_std,
        ssm=ssm,
        marginals=marginals,
        posterior=posterior,
        output_scale=output_scale,
        num_steps=num_steps,
    )

solve_fixed_grid(vector_field, initial_condition, grid, solver, *, ssm) -> IVPSolution ¤

Solve an initial value problem on a fixed, pre-determined grid.

Source code in probdiffeq/ivpsolve.py
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
def solve_fixed_grid(
    vector_field, initial_condition, grid, solver, *, ssm
) -> IVPSolution:
    """Solve an initial value problem on a fixed, pre-determined grid."""
    # Compute the solution

    def body_fn(s, dt):
        _error, s_new = solver.step(state=s, vector_field=vector_field, dt=dt)
        return s_new, s_new

    t0 = grid[0]
    state0 = solver.init(t0, initial_condition)
    _, result_state = control_flow.scan(body_fn, init=state0, xs=np.diff(grid))
    _t, (posterior, output_scale) = solver.extract(result_state)

    # I think the user expects marginals, so we compute them here
    posterior_t0, *_ = initial_condition
    _tmp = _userfriendly_output(posterior=posterior, posterior_t0=posterior_t0, ssm=ssm)
    marginals, posterior = _tmp

    u = ssm.stats.qoi_from_sample(marginals.mean)
    std = ssm.stats.standard_deviation(marginals)
    u_std = ssm.stats.qoi_from_sample(std)
    return IVPSolution(
        t=grid,
        u=u,
        u_std=u_std,
        ssm=ssm,
        marginals=marginals,
        posterior=posterior,
        output_scale=output_scale,
        num_steps=np.arange(1.0, len(grid)),
    )