Skip to content

matfree.funm

matfree.funm

Matrix-free implementations of functions of matrices.

This includes matrix-function-vector products

\[ (f, A, v, p) \mapsto f(A(p))v \]

as well as matrix-function extensions for stochastic trace estimation, which provide

\[ (f, A, v, p) \mapsto v^\top f(A(p))v. \]

Plug these integrands into matfree.stochtrace.estimator.

Examples:

>>> import jax.random
>>> import jax.numpy as jnp
>>> from matfree import decomp
>>>
>>> M = jax.random.normal(jax.random.PRNGKey(1), shape=(10, 10))
>>> A = M.T @ M
>>> v = jax.random.normal(jax.random.PRNGKey(2), shape=(10,))
>>>
>>> # Compute a matrix-logarithm with Lanczos' algorithm
>>> matfun = dense_funm_sym_eigh(jnp.log)
>>> tridiag = decomp.tridiag_sym(4)
>>> matfun_vec = funm_lanczos_sym(matfun, tridiag)
>>> fAx = matfun_vec(lambda s: A @ s, v)
>>> print(fAx.shape)
(10,)

matfree.funm.dense_funm_pade_exp()

Implement dense matrix-exponentials using a Pade approximation.

Use it to construct one of the matrix-free matrix-function implementations, e.g. matfree.funm.funm_arnoldi.

Source code in matfree/funm.py
328
329
330
331
332
333
334
335
336
337
338
def dense_funm_pade_exp():
    """Implement dense matrix-exponentials using a Pade approximation.

    Use it to construct one of the matrix-free matrix-function implementations,
    e.g. [matfree.funm.funm_arnoldi][matfree.funm.funm_arnoldi].
    """

    def fun(dense_matrix):
        return linalg.funm_pade_exp(dense_matrix)

    return fun

matfree.funm.dense_funm_product_svd(matfun)

Implement dense matrix-functions of a product of matrices via SVDs.

Source code in matfree/funm.py
284
285
286
287
288
289
290
291
292
293
294
295
296
297
def dense_funm_product_svd(matfun):
    """Implement dense matrix-functions of a product of matrices via SVDs."""

    def dense_funm(matrix, /):
        # Compute SVD of factorisation
        _, S, Vt = linalg.svd(matrix, full_matrices=False)

        # Since Q orthogonal (orthonormal) to v0, Q v = Q[0],
        # and therefore (Q v)^T f(D) (Qv) = Q[0] * f(diag) * Q[0]
        eigvals, eigvecs = S**2, Vt.T
        fx_eigvals = func.vmap(matfun)(eigvals)
        return eigvecs @ (fx_eigvals[:, None] * eigvecs.T)

    return dense_funm

matfree.funm.dense_funm_schur(matfun)

Implement dense matrix-functions via symmetric Schur decompositions.

Use it to construct one of the matrix-free matrix-function implementations, e.g. matfree.funm.funm_lanczos_sym.

Source code in matfree/funm.py
315
316
317
318
319
320
321
322
323
324
325
def dense_funm_schur(matfun):
    """Implement dense matrix-functions via symmetric Schur decompositions.

    Use it to construct one of the matrix-free matrix-function implementations,
    e.g. [matfree.funm.funm_lanczos_sym][matfree.funm.funm_lanczos_sym].
    """

    def fun(dense_matrix):
        return linalg.funm_schur(dense_matrix, matfun)

    return fun

matfree.funm.dense_funm_sym_eigh(matfun)

Implement dense matrix-functions via symmetric eigendecompositions.

Use it to construct one of the matrix-free matrix-function implementations, e.g. matfree.funm.funm_lanczos_sym.

Source code in matfree/funm.py
300
301
302
303
304
305
306
307
308
309
310
311
312
def dense_funm_sym_eigh(matfun):
    """Implement dense matrix-functions via symmetric eigendecompositions.

    Use it to construct one of the matrix-free matrix-function implementations,
    e.g. [matfree.funm.funm_lanczos_sym][matfree.funm.funm_lanczos_sym].
    """

    def fun(dense_matrix):
        eigvals, eigvecs = linalg.eigh(dense_matrix)
        fx_eigvals = func.vmap(matfun)(eigvals)
        return eigvecs @ linalg.diagonal(fx_eigvals) @ eigvecs.T

    return fun

matfree.funm.funm_arnoldi(dense_funm: Callable, hessenberg: Callable) -> Callable

Implement a matrix-function-vector product via the Arnoldi iteration.

This algorithm uses the Arnoldi iteration and therefore applies only to all square matrices.

Parameters:

Name Type Description Default
dense_funm Callable

An implementation of a function of a dense matrix. For example, the output of funm.dense_funm_sym_eigh funm.dense_funm_schur

required
hessenberg Callable

An implementation of Hessenberg-factorisation. E.g., the output of decomp.hessenberg.

required
Source code in matfree/funm.py
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
def funm_arnoldi(dense_funm: Callable, hessenberg: Callable, /) -> Callable:
    """Implement a matrix-function-vector product via the Arnoldi iteration.

    This algorithm uses the Arnoldi iteration
    and therefore applies only to all square matrices.

    Parameters
    ----------
    dense_funm
        An implementation of a function of a dense matrix.
        For example, the output of
        [funm.dense_funm_sym_eigh][matfree.funm.dense_funm_sym_eigh]
        [funm.dense_funm_schur][matfree.funm.dense_funm_schur]
    hessenberg
        An implementation of Hessenberg-factorisation.
        E.g., the output of
        [decomp.hessenberg][matfree.decomp.hessenberg].
    """

    def estimate(matvec: Callable, vec, *parameters):
        length = linalg.vector_norm(vec)
        vec /= length
        basis, matrix, *_ = hessenberg(matvec, vec, *parameters)

        funm = dense_funm(matrix)
        e1 = np.eye(len(matrix))[0, :]
        return length * (basis @ funm @ e1)

    return estimate

matfree.funm.funm_chebyshev(matfun: Callable, num_matvecs: int, matvec: Callable) -> Callable

Compute a matrix-function-vector product via Chebyshev's algorithm.

This function assumes that the spectrum of the matrix-vector product is contained in the interval (-1, 1), and that the matrix-function is analytic on this interval. If this is not the case, transform the matrix-vector product and the matrix-function accordingly.

Source code in matfree/funm.py
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
def funm_chebyshev(matfun: Callable, num_matvecs: int, matvec: Callable, /) -> Callable:
    """Compute a matrix-function-vector product via Chebyshev's algorithm.

    This function assumes that the **spectrum of the matrix-vector product
    is contained in the interval (-1, 1)**, and that the **matrix-function
    is analytic on this interval**. If this is not the case,
    transform the matrix-vector product and the matrix-function accordingly.
    """
    # Construct nodes
    nodes = _chebyshev_nodes(num_matvecs)
    fx_nodes = matfun(nodes)

    class _ChebyshevState(containers.NamedTuple):
        interpolation: Array
        poly_coefficients: tuple[Array, Array]
        poly_values: tuple[Array, Array]

    def init_func(vec, *parameters):
        # Initialize the scalar recursion
        # (needed to compute the interpolation weights)
        t2_n, t1_n = nodes, np.ones_like(nodes)
        c1 = np.mean(fx_nodes * t1_n)
        c2 = 2 * np.mean(fx_nodes * t2_n)

        # Initialize the vector-valued recursion
        # (this is where the matvec happens)
        t2_x, t1_x = matvec(vec, *parameters), vec
        value = c1 * t1_x + c2 * t2_x
        return _ChebyshevState(value, (t2_n, t1_n), (t2_x, t1_x))

    def recursion_func(val: _ChebyshevState, *parameters) -> _ChebyshevState:
        value, (t2_n, t1_n), (t2_x, t1_x) = val

        # Apply the next scalar recursion and
        # compute the next coefficient
        t2_n, t1_n = 2 * nodes * t2_n - t1_n, t2_n
        c2 = 2 * np.mean(fx_nodes * t2_n)

        # Apply the next matrix-vector product recursion and
        # compute the next interpolation-value
        t2_x, t1_x = 2 * matvec(t2_x, *parameters) - t1_x, t2_x
        value += c2 * t2_x
        return _ChebyshevState(value, (t2_n, t1_n), (t2_x, t1_x))

    def extract_func(val: _ChebyshevState):
        return val.interpolation

    alg = (0, num_matvecs - 1), init_func, recursion_func, extract_func
    return _funm_polyexpand(alg)

matfree.funm.funm_lanczos_sym(dense_funm: Callable, tridiag_sym: Callable) -> Callable

Implement a matrix-function-vector product via Lanczos' tridiagonalisation.

This algorithm uses Lanczos' tridiagonalisation and therefore applies only to symmetric matrices.

Parameters:

Name Type Description Default
dense_funm Callable

An implementation of a function of a dense matrix. For example, the output of funm.dense_funm_sym_eigh funm.dense_funm_schur

required
tridiag_sym Callable

An implementation of tridiagonalisation. E.g., the output of decomp.tridiag_sym.

required
Source code in matfree/funm.py
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def funm_lanczos_sym(dense_funm: Callable, tridiag_sym: Callable, /) -> Callable:
    """Implement a matrix-function-vector product via Lanczos' tridiagonalisation.

    This algorithm uses Lanczos' tridiagonalisation
    and therefore applies only to symmetric matrices.

    Parameters
    ----------
    dense_funm
        An implementation of a function of a dense matrix.
        For example, the output of
        [funm.dense_funm_sym_eigh][matfree.funm.dense_funm_sym_eigh]
        [funm.dense_funm_schur][matfree.funm.dense_funm_schur]
    tridiag_sym
        An implementation of tridiagonalisation.
        E.g., the output of
        [decomp.tridiag_sym][matfree.decomp.tridiag_sym].
    """

    def estimate(matvec: Callable, vec, *parameters):
        length = linalg.vector_norm(vec)
        vec /= length
        Q, matrix, *_ = tridiag_sym(matvec, vec, *parameters)

        funm = dense_funm(matrix)
        e1 = np.eye(len(matrix))[0, :]
        return length * (Q @ funm @ e1)

    return estimate

matfree.funm.integrand_funm_product(dense_funm, algorithm)

Construct the integrand for matrix-function-trace estimation.

Instead of the trace of a function of a matrix, compute the trace of a function of the product of matrices. Here, "product" refers to \(X = A^\top A\).

Source code in matfree/funm.py
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
def integrand_funm_product(dense_funm, algorithm, /):
    r"""Construct the integrand for matrix-function-trace estimation.

    Instead of the trace of a function of a matrix,
    compute the trace of a function of the product of matrices.
    Here, "product" refers to $X = A^\top A$.
    """

    def quadform(matvec, v0, *parameters):
        v0_flat, v_unflatten = tree.ravel_pytree(v0)
        length = linalg.vector_norm(v0_flat)
        v0_flat /= length

        def matvec_flat(v_flat, *p):
            v = v_unflatten(v_flat)
            Av = matvec(v, *p)
            flat, _unflatten = tree.ravel_pytree(Av)
            return flat

        # Decompose into orthogonal-bidiag-orthogonal
        _, B, *_ = algorithm(matvec_flat, v0_flat, *parameters)

        # Evaluate matfun
        fA = dense_funm(B)
        e1 = np.eye(len(fA))[0, :]
        return length**2 * linalg.inner(e1, fA @ e1)

    return quadform

matfree.funm.integrand_funm_product_logdet(bidiag: Callable)

Construct the integrand for the log-determinant of a matrix-product.

Here, "product" refers to \(X = A^\top A\).

Source code in matfree/funm.py
234
235
236
237
238
239
240
def integrand_funm_product_logdet(bidiag: Callable, /):
    r"""Construct the integrand for the log-determinant of a matrix-product.

    Here, "product" refers to $X = A^\top A$.
    """
    dense_funm = dense_funm_product_svd(np.log)
    return integrand_funm_product(dense_funm, bidiag)

matfree.funm.integrand_funm_product_schatten_norm(power, bidiag: Callable)

Construct the integrand for the \(p\)-th power of the Schatten-p norm.

Source code in matfree/funm.py
243
244
245
246
247
248
249
250
251
def integrand_funm_product_schatten_norm(power, bidiag: Callable, /):
    r"""Construct the integrand for the $p$-th power of the Schatten-p norm."""

    def matfun(x):
        """Matrix-function for Schatten-p norms."""
        return x ** (power / 2)

    dense_funm = dense_funm_product_svd(matfun)
    return integrand_funm_product(dense_funm, bidiag)

matfree.funm.integrand_funm_sym(dense_funm, tridiag_sym)

Construct the integrand for matrix-function-trace estimation.

This function assumes a symmetric matrix.

Parameters:

Name Type Description Default
dense_funm

An implementation of a function of a dense matrix. For example, the output of funm.dense_funm_sym_eigh funm.dense_funm_schur

required
tridiag_sym

An implementation of tridiagonalisation. E.g., the output of decomp.tridiag_sym.

required
Source code in matfree/funm.py
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
def integrand_funm_sym(dense_funm, tridiag_sym, /):
    """Construct the integrand for matrix-function-trace estimation.

    This function assumes a symmetric matrix.

    Parameters
    ----------
    dense_funm
        An implementation of a function of a dense matrix.
        For example, the output of
        [funm.dense_funm_sym_eigh][matfree.funm.dense_funm_sym_eigh]
        [funm.dense_funm_schur][matfree.funm.dense_funm_schur]
    tridiag_sym
        An implementation of tridiagonalisation.
        E.g., the output of
        [decomp.tridiag_sym][matfree.decomp.tridiag_sym].

    """

    def quadform(matvec, v0, *parameters):
        v0_flat, v_unflatten = tree.ravel_pytree(v0)
        length = linalg.vector_norm(v0_flat)
        v0_flat /= length

        def matvec_flat(v_flat, *p):
            v = v_unflatten(v_flat)
            Av = matvec(v, *p)
            flat, unflatten = tree.ravel_pytree(Av)
            return flat

        _, dense, *_ = tridiag_sym(matvec_flat, v0_flat, *parameters)

        fA = dense_funm(dense)
        e1 = np.eye(len(fA))[0, :]
        return length**2 * linalg.inner(e1, fA @ e1)

    return quadform

matfree.funm.integrand_funm_sym_logdet(tridiag_sym: Callable)

Construct the integrand for the log-determinant.

This function assumes a symmetric, positive definite matrix.

Parameters:

Name Type Description Default
tridiag_sym Callable

An implementation of tridiagonalisation. E.g., the output of decomp.tridiag_sym.

required
Source code in matfree/funm.py
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
def integrand_funm_sym_logdet(tridiag_sym: Callable, /):
    """Construct the integrand for the log-determinant.

    This function assumes a symmetric, positive definite matrix.

    Parameters
    ----------
    tridiag_sym
        An implementation of tridiagonalisation.
        E.g., the output of
        [decomp.tridiag_sym][matfree.decomp.tridiag_sym].

    """
    dense_funm = dense_funm_sym_eigh(np.log)
    return integrand_funm_sym(dense_funm, tridiag_sym)