matfree.funm
matfree.funm
Matrix-free implementations of functions of matrices.
This includes matrix-function-vector products
as well as matrix-function extensions for stochastic trace estimation, which provide
Plug these integrands into matfree.stochtrace.estimator.
Examples:
>>> import jax.random
>>> import jax.numpy as jnp
>>> from matfree import decomp
>>>
>>> M = jax.random.normal(jax.random.PRNGKey(1), shape=(10, 10))
>>> A = M.T @ M
>>> v = jax.random.normal(jax.random.PRNGKey(2), shape=(10,))
>>>
>>> # Compute a matrix-logarithm with Lanczos' algorithm
>>> matfun = dense_funm_sym_eigh(jnp.log)
>>> tridiag = decomp.tridiag_sym(4)
>>> matfun_vec = funm_lanczos_sym(matfun, tridiag)
>>> fAx = matfun_vec(lambda s: A @ s, v)
>>> print(fAx.shape)
(10,)
matfree.funm.dense_funm_pade_exp()
Implement dense matrix-exponentials using a Pade approximation.
Use it to construct one of the matrix-free matrix-function implementations, e.g. matfree.funm.funm_arnoldi.
Source code in matfree/funm.py
328 329 330 331 332 333 334 335 336 337 338 |
|
matfree.funm.dense_funm_product_svd(matfun)
Implement dense matrix-functions of a product of matrices via SVDs.
Source code in matfree/funm.py
284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
|
matfree.funm.dense_funm_schur(matfun)
Implement dense matrix-functions via symmetric Schur decompositions.
Use it to construct one of the matrix-free matrix-function implementations, e.g. matfree.funm.funm_lanczos_sym.
Source code in matfree/funm.py
315 316 317 318 319 320 321 322 323 324 325 |
|
matfree.funm.dense_funm_sym_eigh(matfun)
Implement dense matrix-functions via symmetric eigendecompositions.
Use it to construct one of the matrix-free matrix-function implementations, e.g. matfree.funm.funm_lanczos_sym.
Source code in matfree/funm.py
300 301 302 303 304 305 306 307 308 309 310 311 312 |
|
matfree.funm.funm_arnoldi(dense_funm: Callable, hessenberg: Callable) -> Callable
Implement a matrix-function-vector product via the Arnoldi iteration.
This algorithm uses the Arnoldi iteration and therefore applies only to all square matrices.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dense_funm
|
Callable
|
An implementation of a function of a dense matrix. For example, the output of funm.dense_funm_sym_eigh funm.dense_funm_schur |
required |
hessenberg
|
Callable
|
An implementation of Hessenberg-factorisation. E.g., the output of decomp.hessenberg. |
required |
Source code in matfree/funm.py
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
|
matfree.funm.funm_chebyshev(matfun: Callable, num_matvecs: int, matvec: Callable) -> Callable
Compute a matrix-function-vector product via Chebyshev's algorithm.
This function assumes that the spectrum of the matrix-vector product is contained in the interval (-1, 1), and that the matrix-function is analytic on this interval. If this is not the case, transform the matrix-vector product and the matrix-function accordingly.
Source code in matfree/funm.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
|
matfree.funm.funm_lanczos_sym(dense_funm: Callable, tridiag_sym: Callable) -> Callable
Implement a matrix-function-vector product via Lanczos' tridiagonalisation.
This algorithm uses Lanczos' tridiagonalisation and therefore applies only to symmetric matrices.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dense_funm
|
Callable
|
An implementation of a function of a dense matrix. For example, the output of funm.dense_funm_sym_eigh funm.dense_funm_schur |
required |
tridiag_sym
|
Callable
|
An implementation of tridiagonalisation. E.g., the output of decomp.tridiag_sym. |
required |
Source code in matfree/funm.py
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
|
matfree.funm.integrand_funm_product(dense_funm, algorithm)
Construct the integrand for matrix-function-trace estimation.
Instead of the trace of a function of a matrix, compute the trace of a function of the product of matrices. Here, "product" refers to \(X = A^\top A\).
Source code in matfree/funm.py
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
|
matfree.funm.integrand_funm_product_logdet(bidiag: Callable)
Construct the integrand for the log-determinant of a matrix-product.
Here, "product" refers to \(X = A^\top A\).
Source code in matfree/funm.py
234 235 236 237 238 239 240 |
|
matfree.funm.integrand_funm_product_schatten_norm(power, bidiag: Callable)
Construct the integrand for the \(p\)-th power of the Schatten-p norm.
Source code in matfree/funm.py
243 244 245 246 247 248 249 250 251 |
|
matfree.funm.integrand_funm_sym(dense_funm, tridiag_sym)
Construct the integrand for matrix-function-trace estimation.
This function assumes a symmetric matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dense_funm
|
An implementation of a function of a dense matrix. For example, the output of funm.dense_funm_sym_eigh funm.dense_funm_schur |
required | |
tridiag_sym
|
An implementation of tridiagonalisation. E.g., the output of decomp.tridiag_sym. |
required |
Source code in matfree/funm.py
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
|
matfree.funm.integrand_funm_sym_logdet(tridiag_sym: Callable)
Construct the integrand for the log-determinant.
This function assumes a symmetric, positive definite matrix.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tridiag_sym
|
Callable
|
An implementation of tridiagonalisation. E.g., the output of decomp.tridiag_sym. |
required |
Source code in matfree/funm.py
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
|